Catalytic Asymmetric Hydrogenation¹

By W. S. KNOWLES,* M. J. SABACKY, and B. D. VINEYARD

(Monsanto Industrial Chemicals Company, St. Louis, Missouri 63166)

Summary An efficient direct route to optically active α -amino acids has been achieved by a catalytic asymmetric reduction of α -acylaminoacrylic acids.

RECENT publications² have shown that fairly efficient catalytic asymmetric hydrogenation can be accomplished using a rhodium complex with a chiral phosphine or amide ligand. These results prompt us to report the reduction of α -acylaminoacrylic acids. This technique, and the fact that excess L or D amino-acid derivatives are often easily separated from DL, now provides a practical synthesis of these compounds without the usual resolution step.

In previous work phosphine ligands in which the asymmetry is in the side chain have been used.^{2a,b} We describe cases in which the chirality is on the phosphorus. The Table shows the results obtained with various phosphines and substrates. The considerable variation of yields with phosphine structure clearly shows the need for a match of catalyst and substrate. Of particular interest are the high optical purities obtained with *o*-anisylmethylcyclohexylphosphine when applied to various acylphenylalanine precursors. These yields in the 85-90% range, and the probability that our phosphine was only 95% optically pure, show that we have achieved almost complete stereospecificity. With acylaminocinnamic acids our catalyst system was very active, the above results being obtained in 3 h at 25° with 500 mm H₂ and 0.05% metal. A successful catalyst can be made in a variety of ways. Rhodium(I)-diene complexes of the type [Rh(1,5-hexadiene)Cl]₂ mixed with two chiral ligands and prehydrogenated for 5 min at 1 atm H₂ work well. RhCl₃,3H₂O and two ligands with a more vigorous prehydrogenation is also quite effective.

Our contention^{1b} that optimum results are obtained with exactly two ligands is confirmed by preparation of a crystalline compound [Rh(1,5-cyclo-octadiene)(Cl)L] (L = o-anisylmethylphenylphosphine). The mono-ligand derivative gave slow hydrogenation and low optical bias. Adding *in situ* another mole of chiral L gave fast rates and high optical purities. If non-chiral dimethylphenylphosphine is used as the extra ligand, fast rates but only half the optical yield is obtained. A crystalline two-ligand compound [Rh(1,5-cyclo-octadiene)L₂]⁺(C₆H₅)₄B⁻ or BF₄³⁻ gave identical results suggesting that the catalyst is cationic. These solid derivatives are air-stable and convenient to use. They absorb hydrogen readily in methanol solution at 25° and at 1-2 atm to form the active catalyst.

The o-anisylmethylphenylphosphine was made according to Mislow⁴ by reaction of o-anisylmagnesium bromide with resolved menthyl methylphenylphosphinate followed by

	INDEL. IIyarogenanon of a-acyaninoacryni acia				ius	
	Chir al ph osphine R ^a R ¹ -P-R ^a			Substrate R4CH=C(NHCOR ⁴)CO ₂ H		Product R4CH2-CH(NHCOR5)CO2H
R1	R ^a	R³	Approx Optical purity %	R4	R⁵	Optical purity %ª
o-Anisvl	Ме	\mathbf{Ph}	95	3-MeO-4-(OH)C.H.	\mathbf{Ph}	58b
Me	Ph	Pr ⁿ	90	3-MeO-4-(OH)C.H.	Ph	280
Me	Ph	Pri	90	3-MeO-4-(OH)C.H.	Ph	280
m-Anisvl	Me	\mathbf{Ph}	80	3-MeO-4-(OH)C.H.	\mathbf{Ph}	10
o-Anisvl	Cyclohexyl	Me	95	3-MeO-4-(OH)C.H.	\mathbf{Ph}	87d
o-Anisvl	Cyclohexyl	Me	95	3-MeO-4-(OH)C.H.	\mathbf{Ph}	90°
Cyclohexyl	Me	Ph	75	3-MeO-4-(OH)C,H	\mathbf{Ph}	320
o-Anisvl	\mathbf{Ph}	Pri	80	3-MeO-4-(OH)C,H	Ph	10
o-Anisyl	Me	\mathbf{Ph}	95	3-MeO-4-(AcÓ)C.H.	Me	55 ^b
o-Anisyl	Me	\Pr^n	95	3-MeO-4-(AcO)C ₆ H ₈	Me	20°
o-Anisyl	Cyclohexyl	Me	90	3-MeO-4-(AcO)C ₆ H ₈	Me	771
o-Anisyl	Cyclohexyl	Me	95	$3-MeO-4-(AcO)C_{a}H_{a}$	Me	85 ^d
o-Anisyl	Cyclohexyl	Me	95	3-MeO-4-(AcO)C ₆ H ₂	Me	88°
o-Anisyl	Cyclohexyl	Me	95	Ph	Me	85d
o-Anisyl	Cyclohexyl	Me	95	Ph	\mathbf{Ph}	85d
o-Anisyl	Cyclohexyl	Me	95	н	Me	60 ^d
-						

TABLE. Hydrogenation of a-acylaminoacrylic acids

^a All optical purities were determined by direct comparison of the total reaction mixture with a blank made from authentic acylated amino acid in order to avoid any enrichment from work-up or slight contribution from the catalyst. ^b In a stirred autoclave in methanol at 55 p.s.i. (abs.) of hydrogen at 50° with one equivalent of NaOH added. The molar ratio of substrate to catalyst was 3000:1. ^c In a Parr shaker in methanol at 55 p.s.i. (abs.) at 25°. ^d As c in 95% ethanol at 10 p.s.i. (abs.). ^e As d in propan-2-ol. ^f As b using 0.05% triethylamine instead of NaOH.

J.C.S. СНЕМ. СОММ., 1972

reduction with HSiCl_a. The other phosphines were made similarly. o-Anisylcyclohexylmethylphosphine was prepared by selective reduction of o-anisylmethylphenylphosphine oxide with 5% Rh on carbon followed by HSiCla reduction.

(Received, September 27th, 1971; Com. 1679.)

¹ For previous papers in series see: (a) W. S. Knowles and M. J. Sabacky, Chem. Comm., 1968, 1445; (b) W. S. Knowles, M. J. Sabacky, and B. D. Vineyard, Ann. New York Acad. Sci., 1970, 172, 232; (c) patents pending.
² (a) J. D. Morrison, R. E. Burnett, A. M. Aguiar, C. J. Morrow, and C. Phillips, J. Amer. Chem. Soc., 1971, 93, 1301; (b) T. P. Dang and H. B. Kagan, Chem. Comm., 1971, 481; (c) P. Abley and F. J. McQuillin, J. Chem. Soc. (C), 1971, 844.
^a M. Green, T. A. Kuc, and S. H. Taylor, Chem. Comm., 1970, 1553.
⁴ O. Kospiun, R. A. Lewis, J. Chickos, and K. Mislow, J. Amer. Chem. Soc., 1968, 90, 4842; K. Naumann, G. Zon, and K. Mislow, hid 1969, 91, 7019.

bid, 1969, 91, 7012.